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Since Ruzicka and co-workers proposed the “biogenetic isoprene
rule”,1 the remarkable cyclization of (3S)2,3-oxidosqualene (1) to
â-amyrin (2) has fascinated organic chemists for over half a
century.2 â-Amyrin synthase (âAS) (EC 5.4.99.-) is thought to bind
the substrate in thechair-chair-chair-boat conformation and
mediate formation of new carbon-carbon bonds in regio- and
stereospecific manner (Scheme 1A).3 The proton-initiated sequential
cyclization first produces the tetracyclic dammarenyl C-20 cation,
and the subsequent skeletal rearrangements lead to the pentacyclic
oleanyl cation via the baccharenyl and the lupanyl cationic
intermediates. Finally, a series of 1,2-hydride shifts with loss of
the H-12R proton yields the pentacyclic ring system with the∆12

double bond.âASs from several plants includingPisum satiVum
have been purified; the cDNA has been cloned and functionally
expressed inSaccharomyces cereVisiae.4,5 The enzymes show only
ca. 20% overall amino acid sequence identity with bacterial
squalene:hopene cyclase fromAlicyclobacillus acidocaldarius, the
best characterized squalene cyclizing enzyme with its X-ray crystal
structure reported.6 Recent mutational studies onâAS from Panax
ginsenghave revealed that the active-site residues Y261 and W259
play a critical role for D- and E-ring formation ofâ-amyrin.7

During the cyclization reaction, D-ring formation proceeds
through a five-membered ring closure to generate a Markovnikov
tertiary cation, which is followed by ring expansion to yield a
tetracyclic secondary cation. Formation of the baccharenyl cation
thus relieves some ring strain by creating a six-membered D-ring.
To further understand the reaction mechanism, here we report en-
zymatic conversion of 22,23-dihydro-2,3-oxidosqualene (3), a sub-
strate analogue lacking the terminal double bond of 2,3-oxidosqua-
lene, therefore making it impossible to form pentacyclic products.8

22,23-Dihydro-2,3-oxidosqualene (3) was chemically synthesized
in racemic form starting from 1,1′,2-trisnorsqualene-3-aldehyde as
described before,9a,10,11and incubation with recombinantP. satiVum
âAS5b resulted in isolation of two products which were completely
separated by reverse-phase HPLC.12 Spectroscopic data (1H and
13C NMR, HMQC, HMBC, and MS) of the major product (3.0
mg, 4% yield) were characteristic of those of tetracyclic triterpene
alcohols and showed good accordance with eupha-7,24-dien-3â-ol
(butyrospermol)7b except the signals due to the terminal double
bond, suggesting the structure of euph-7-en-3â-ol (4).13 Confirma-
tion of the structure, including the stereochemistry of C-20, was
finally obtained by direct comparison (GC, GC-MS, and1H NMR)
with the chemically synthesized euph-7-en-3â-ol.14 On the other
hand, the minor product (0.7 mg, 1% yield) afforded spectroscopic
spectra completely identical with those of bacchar-12-en-3â-ol (5),15

which was also confirmed by direct comparison with an authentic
compound.16

22,23-Dihydro-2,3-oxidosqualene was thus enzymatically con-
verted to a 4:1 mixture of euph-7-en-3â-ol (4) and bacchar-12-en-
3â-ol (5) (Scheme 1B). The enzyme initiated cyclization of3
from a chair-chair-chair-boat conformation first to generate
the tetracyclic dammarenyl C-20 cation with the 17â-side chain.
Then, a backbone rearrangement (H-17Rf20R , H-13âf17â,
CH3-14Rf13R, CH3-8âf14â) with elimination of H-7R yielded
euph-7-en-3â-ol, while D-ring expansion to the baccharenyl cation,
and subsequent hydride shift (H-13âf18â) with loss of H-12R as
in the case ofâ-amyrin formation, produced bacchar-12-en-3â-ol.

This is the first demonstration of the enzymatic formation of
the baccharene skeleton with a six-membered D-ring. It was
remarkable that the D-ring expansion sacrificing a tertiary carboca-
tion for a secondary one took place even in the absence of the
terminal double bond.10 Thus, the enzymatic formation of the anti-
Markovnikov six-membered D-ring did not depend on the partici-
pation of the terminalπ-electrons. In contrast, bacterial squalene
cyclases, normally catalyzing formation of pentacyclic triterpenes,
have been shown to cyclize 2,3-dihydrosqualene to thermodynami-
cally favored tetracyclic products with a Markovnikov five-
membered D-ring; tetrahymanol synthase fromTetrahymana py-
riformis afforded euph-7-ene, whileA. acidocaldariushopene
synthase yielded a 1:1 mixture of dammar-13(17)-ene and dammar-
12-ene.10 In addition, it is noteworthy that the cyclization only
yielded a product with the∆12 double bond. Since it has been
reported that a BF3-Et2O-induced backbone rearrangement of 3â,4â-
epoxyshionane readily generated bacchar-12-en-3â-ol (5),17 the 1,2-
hydride shifts with the elimination of H-12R proton may possibly
take place rather spontaneously to form the relatively stable∆12

double bond. InâAS, active-site residues involved in the termination
of the cyclization reaction by regiospecific proton abstraction at
H-12R have not been identified yet.

In the absence of the terminal double bond, however, most of
the reactions were interrupted at the dammarenyl cation, followed
by a backbone rearrangement to yield euph-7-en-3â-ol. Here it
should be noted that the stereochemistry of the cyclization product
was strictly controlled by the enzyme. It is likely that the formation
of the C-20R configuration from the dammarenyl C-20 cation
involves the least motion pathway; i.e. only 60° rotation around
the C-17-C-20 bond prior to the proton migration from C-17 to
C-20, as in the case of lanosterol formation.2 Interestingly, as
mentioned above, enzymatic cyclization of 2,3-dihydrosqualene into
euph-7-ene byT. pyriformis tetrahymanol synthase has been
reported.10

Finally, our result suggests a close relationship betweenâAS
and the triterpene synthases producing eupha-7,24-dien-3â-ol or
bacchara-12,21-dien-3â-ol. Only a small modification of the active
site would generate the diversity of the cyclization reactions. Indeed,
recently it has been demonstrated that W259L mutant ofP. ginseng
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âAS yielded eupha-7,24-dien-3â-ol.7b Further study of the enzyme
reaction by utilizing active-site probes are now in progress in our
laboratories.
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Scheme 1. Enzymatic Formation of (A) â-Amyrin (2) and (B) Euph-7-en-3â-ol (4) and Bacchar-12-en-3â-ol (5) from
22,23-Dihydro-2,3-oxidosqualene (3)
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