Enzymatic Cyclization of 22,23-Dihydro-2,3-oxidosqualene into Euph-7-en-3 β-ol and Bacchar-12-en-3 β-ol by Recombinant β-Amyrin Synthase

Ikuro Abe,, ${ }^{\text {, }}$ Yuichi Sakano, ${ }^{\dagger}$ Hideya Tanaka, ${ }^{\dagger}$ Weiwei Lou, ${ }^{\dagger}$ Hiroshi Noguchi, ${ }^{\dagger}$ Masaaki Shibuya, ${ }^{\S}$ and Yutaka Ebizuka ${ }^{\S}$

School of Pharmaceutical Sciences and the COE 21 Program, University of Shizuoka, Shizuoka 422-8526, Japan, and Graduate School of Pharmaceutical Sciences, The University of Tokyo, Bunkyo-ku, Tokyo 113-0033, Japan

Received December 26, 2003; E-mail: abei@ys7.u-shizuoka-ken.ac.jp

Since Ruzicka and co-workers proposed the "biogenetic isoprene rule", ${ }^{1}$ the remarkable cyclization of ($3 S$)2,3-oxidosqualene (1) to β-amyrin (2) has fascinated organic chemists for over half a century. ${ }^{2} \beta$-Amyrin synthase ($\beta \mathrm{AS}$) (EC 5.4.99.-) is thought to bind the substrate in the chair-chair-chair-boat conformation and mediate formation of new carbon-carbon bonds in regio- and stereospecific manner (Scheme 1A). ${ }^{3}$ The proton-initiated sequential cyclization first produces the tetracyclic dammarenyl C-20 cation, and the subsequent skeletal rearrangements lead to the pentacyclic oleanyl cation via the baccharenyl and the lupanyl cationic intermediates. Finally, a series of 1,2-hydride shifts with loss of the $\mathrm{H}-12 \alpha$ proton yields the pentacyclic ring system with the Δ^{12} double bond. β ASs from several plants including Pisum sativum have been purified; the cDNA has been cloned and functionally expressed in Saccharomyces cerevisiae. ${ }^{4,5}$ The enzymes show only ca. 20% overall amino acid sequence identity with bacterial squalene:hopene cyclase from Alicyclobacillus acidocaldarius, the best characterized squalene cyclizing enzyme with its X-ray crystal structure reported. ${ }^{6}$ Recent mutational studies on β AS from Panax ginseng have revealed that the active-site residues Y261 and W259 play a critical role for D - and E-ring formation of β-amyrin. ${ }^{7}$

During the cyclization reaction, D-ring formation proceeds through a five-membered ring closure to generate a Markovnikov tertiary cation, which is followed by ring expansion to yield a tetracyclic secondary cation. Formation of the baccharenyl cation thus relieves some ring strain by creating a six-membered D-ring. To further understand the reaction mechanism, here we report enzymatic conversion of 22,23 -dihydro-2,3-oxidosqualene (3), a substrate analogue lacking the terminal double bond of 2,3-oxidosqualene, therefore making it impossible to form pentacyclic products. ${ }^{8}$

22,23-Dihydro-2,3-oxidosqualene (3) was chemically synthesized in racemic form starting from $1,1^{\prime}, 2$-trisnorsqualene- 3 -aldehyde as described before, ${ }^{9 a, 10,11}$ and incubation with recombinant P. sativum $\beta \mathrm{AS}^{5 \mathrm{~b}}$ resulted in isolation of two products which were completely separated by reverse-phase HPLC. ${ }^{12}$ Spectroscopic data (${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR, HMQC, HMBC, and MS) of the major product (3.0 $\mathrm{mg}, 4 \%$ yield) were characteristic of those of tetracyclic triterpene alcohols and showed good accordance with eupha-7,24-dien- 3β-ol (butyrospermol) ${ }^{7 \mathrm{~b}}$ except the signals due to the terminal double bond, suggesting the structure of euph-7-en-3 β-ol (4). ${ }^{13}$ Confirmation of the structure, including the stereochemistry of C-20, was finally obtained by direct comparison (GC, GC -MS , and ${ }^{1} \mathrm{H} N \mathrm{NR}$) with the chemically synthesized euph-7-en-3 β-ol. ${ }^{14}$ On the other hand, the minor product ($0.7 \mathrm{mg}, 1 \%$ yield) afforded spectroscopic spectra completely identical with those of bacchar-12-en-3 β-ol (5), ${ }^{15}$ which was also confirmed by direct comparison with an authentic compound. ${ }^{16}$

[^0]22,23-Dihydro-2,3-oxidosqualene was thus enzymatically converted to a $4: 1$ mixture of euph-7-en- 3β-ol (4) and bacchar-12-en3β-ol (5) (Scheme 1B). The enzyme initiated cyclization of $\mathbf{3}$ from a chair-chair-chair-boat conformation first to generate the tetracyclic dammarenyl C - 20 cation with the 17β-side chain. Then, a backbone rearrangement $(\mathrm{H}-17 \alpha \rightarrow 20 \alpha, \mathrm{H}-13 \beta \rightarrow 17 \beta$, $\mathrm{CH}_{3}-14 \alpha \rightarrow 13 \alpha, \mathrm{CH}_{3}-8 \beta \rightarrow 14 \beta$) with elimination of $\mathrm{H}-7 \alpha$ yielded euph-7-en- 3β-ol, while D -ring expansion to the baccharenyl cation, and subsequent hydride shift $(\mathrm{H}-13 \beta \rightarrow 18 \beta)$ with loss of $\mathrm{H}-12 \alpha$ as in the case of β-amyrin formation, produced bacchar-12-en-3 β-ol.
This is the first demonstration of the enzymatic formation of the baccharene skeleton with a six-membered D-ring. It was remarkable that the D-ring expansion sacrificing a tertiary carbocation for a secondary one took place even in the absence of the terminal double bond. ${ }^{10}$ Thus, the enzymatic formation of the antiMarkovnikov six-membered D-ring did not depend on the participation of the terminal π-electrons. In contrast, bacterial squalene cyclases, normally catalyzing formation of pentacyclic triterpenes, have been shown to cyclize 2,3-dihydrosqualene to thermodynamically favored tetracyclic products with a Markovnikov fivemembered D-ring; tetrahymanol synthase from Tetrahymana pyriformis afforded euph-7-ene, while A. acidocaldarius hopene synthase yielded a 1:1 mixture of dammar-13(17)-ene and dammar12 -ene. ${ }^{10}$ In addition, it is noteworthy that the cyclization only yielded a product with the Δ^{12} double bond. Since it has been reported that a $\mathrm{BF}_{3}-\mathrm{Et}_{2} \mathrm{O}$-induced backbone rearrangement of $3 \beta, 4 \beta$ epoxyshionane readily generated bacchar-12-en- 3β-ol (5), ${ }^{17}$ the $1,2-$ hydride shifts with the elimination of $\mathrm{H}-12 \alpha$ proton may possibly take place rather spontaneously to form the relatively stable Δ^{12} double bond. In $\beta \mathrm{AS}$, active-site residues involved in the termination of the cyclization reaction by regiospecific proton abstraction at $\mathrm{H}-12 \alpha$ have not been identified yet.
In the absence of the terminal double bond, however, most of the reactions were interrupted at the dammarenyl cation, followed by a backbone rearrangement to yield euph-7-en-3 β-ol. Here it should be noted that the stereochemistry of the cyclization product was strictly controlled by the enzyme. It is likely that the formation of the C-20R configuration from the dammarenyl C-20 cation involves the least motion pathway; i.e. only 60° rotation around the C-17-C-20 bond prior to the proton migration from C-17 to C-20, as in the case of lanosterol formation. ${ }^{2}$ Interestingly, as mentioned above, enzymatic cyclization of 2,3-dihydrosqualene into euph-7-ene by T. pyriformis tetrahymanol synthase has been reported. ${ }^{10}$
Finally, our result suggests a close relationship between β AS and the triterpene synthases producing eupha-7,24-dien-3 3 -ol or bacchara-12,21-dien-3 β-ol. Only a small modification of the active site would generate the diversity of the cyclization reactions. Indeed, recently it has been demonstrated that W259L mutant of P. ginseng

Scheme 1. Enzymatic Formation of (A) β-Amyrin (2) and (B) Euph-7-en-3 β-ol (4) and Bacchar-12-en-3 β-ol (5) from 22,23-Dihydro-2,3-oxidosqualene (3)

β AS yielded eupha-7,24-dien- 3β-ol. ${ }^{7 \mathrm{~b}}$ Further study of the enzyme reaction by utilizing active-site probes are now in progress in our laboratories.

Acknowledgment. We thank Prof. T. Akihisa for the gift of bacchara-12,21-dien-3 β-ol. Financial support is by the COE 21 Program and Grant-in-Aid for Scientific Research (Nos. 14580613, 15101007, and 1531053) from the Ministry of Education, Culture, Sports, Science and Technology, and by a Grant-in-Aid from NOVARTIS Foundation for the Promotion of Science, and from the Tokyo Biochemical Research Foundation.

Supporting Information Available: Complete set of spectroscopic data of euph-7-en- 3β-ol and bacchar-12-en- 3β-ol (PDF). This material is available free of charge via the Internet at http://pubs.acs.org.

References

(1) Eschenmoser, A.; Ruzicka, L.; Jeger, O.; Arigoni, D. Helv. Chim. Acta 1955, 38, 1890-1904.
(2) For recent reviews, see: (a) Abe, I.; Rohmer, M.; Prestwich, G. D. Chem. Rev. 1993, 93, 2189-2206. (b) Wendt, K. U.; Schulz, G. E.; Corey, E. J.; Liu, D. R. Angew. Chem., Int. Ed. 2000, 39, 2812-2833. (c) Segura, M. J. R.; Jackson, B. E.; Matsuda, S. P. T. Nat. Prod. Rep. 2003, 20, 304-317.
(3) (a) Rees, H. H.; Britton, G.; Goodwin, T. W. Biochem. J. 1968, 106, 659665. (b) Barton, D. H. R.; Mellows, G.; Widdowson, D. A.; Wright, J. J. J. Chem. Soc. (C) 1971, 1142-1148. (c) Seo, S.; Tomita, Y.; Tori, K. J. Am. Chem. Soc. 1981, 103, 2075-2080. (d) Seo, S.; Yoshimura, Y.; Uomori, A.; Takeda, K.; Seto, H.; Ebizuka, Y.; Sankawa, U. J. Am. Chem. Soc. 1988, $110,1740-1745$.
(4) For enzyme purification, see: (a) Abe, I.; Sankawa, U.; Ebizuka, Y. Chem. Pharm. Bull. 1989, 37, 536-538. (b) Abe, I.; Ebizuka, Y.; Seo, S.; Sankawa, U. FEBS Lett. 1989, 249, 100-104. (c) Abe, I.; Sankawa, U.; Ebizuka, Y. Chem. Pharm. Bull. 1992, 40, 1755-1760.
(5) For cloning and expression, see: (a) Kushiro, T.; Shibuya, M.; Ebizuka, Y. Eur. J. Biochem. 1998, 256, 238-244. (b) Morita, M.; Shibuya, M.; Kushiro, T.; Masuda, K.; Ebizuka, Y. Eur. J. Biochem. 2000, 267, 34533460.
(6) (a) Wendt, K. U.; Poralla, K.; Schulz, G. E. Science 1997, 277, 18111815. (b) Wendt, K. U.; Lenhart, A.; Schulz, G. E. J. Mol. Biol. 1999, 286, 175-187.
(7) (a) Kushiro, T.; Shibuya, M.; Ebizuka, Y. J. Am. Chem. Soc. 1999, 121, 1208-1216. (b) Kushiro, T.; Shibuya, M.; Masuda, K.; Ebizuka, Y. J. Am. Chem. Soc. 2000, 122, 6816-6824.
(8) For a preliminary result for enzymatic conversion of 22,23-dihydro-2,3oxidosqualene by $\beta \mathrm{AS}$, see: Dietsch, A. Ph.D. Thesis, Université Louis Pasteur, Strasbourg, France, 1980. A ${ }^{3} \mathrm{H}$-labeled substrate was incubated with a crude cell-free extract from germinating pea seeds. Recrystallizations of the enzyme reaction product with cold bacchar-12-en-3 β-ol were repeated to constant specific activity.
(9) (a) Corey, E. J.; Gross, S. K. J. Am. Chem. Soc. 1967, 89, 4561-4562. (b) Corey, E. J.; Gross, S. K. J. Am. Chem. Soc. 1968, 90, 5045-5046.
(10) (a) Abe, I.; Rohmer, M. J. Chem. Soc., Chem. Commun. 1991, 902-903. (b) Abe, I.; Rohmer, M. J. Chem. Soc., Perkin Trans. 1 1994, 783-791.
(11) ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 5.16(\mathrm{br} \mathrm{t}, 1 \mathrm{H}, J=6.8 \mathrm{~Hz}), 5.15(\mathrm{~m}$, $2 \mathrm{H}), 5.10(\mathrm{t} \mathrm{d}, 1 \mathrm{H}, J=6.8,0.8 \mathrm{~Hz}), 2.70(\mathrm{t}, 1 \mathrm{H}, J=6.2 \mathrm{~Hz}), 2.10(\mathrm{~m}$, $2 \mathrm{H}), 2.08(\mathrm{~m}, 4 \mathrm{H}), 2.01-1.99(\mathrm{~m}, 8 \mathrm{H}), 1.93(\mathrm{~m}, 2 \mathrm{H}), 1.67(\mathrm{~m}, 2 \mathrm{H}), 1.62-$ $1.58(\mathrm{br} \mathrm{s}, 12 \mathrm{H}), 1.53(\mathrm{sept}, 1 \mathrm{H}, J=6.8 \mathrm{~Hz}), 1.37(\mathrm{~m}, 2 \mathrm{H}), 1.30(\mathrm{~s}, 3 \mathrm{H})$, $1.26(\mathrm{~s}, 3 \mathrm{H}), 1.13(\mathrm{~m}, 2 \mathrm{H}), 0.87(\mathrm{~d}, 6 \mathrm{H}, J=6.8 \mathrm{~Hz}) .{ }^{13} \mathrm{C}$ NMR (100 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 135.3,135.1,135.0,134.0,124.9,124.4,124.2,124.0$, $64.2,58.3,39.9,39.8,39.7,38.6,36.3,28.3(\times 2), 27.9,27.5,26.7,26.6$, 25.7, 24.9, $22.6(\times 2), 18.7,16.0(\times 3), 15.9$. LRMS (EI): m / z (\% rel int) 428, 410, 81. HRMS (EI): found for $\left[\mathrm{C}_{30} \mathrm{H}_{52} \mathrm{O}\right]^{+} 428.3990$; calcd 428.4018.
(12) P. sativum β AS was expressed in the yeast mutant strain GIL77 (30 L of culture) as described. ${ }^{5 \mathrm{~b}}$ The reaction mixture containing 3 (140 mg), 0.45 M sucrose, 1 mM EDTA, 1 mM DTT, and 0.1% Triton X-100 in 650 mL of $0.1 \mathrm{M} \mathrm{KPB}, \mathrm{pH} 7.4$ was incubated at $30^{\circ} \mathrm{C}$ for 18 h . The incubations were stopped by adding equivalent volume of $20 \% \mathrm{KOH}$ in 50% aq EtOH , saponified at $30^{\circ} \mathrm{C}$ for 24 h , and extracted with 1.3 L of hexane $(\times 3)$. The combined extracts were evaporated to dryness and separated on SiO_{2} column ($20 \% \mathrm{EtOAc} / \mathrm{hexane}$) to yield 21.3 mg of 4,4 -dimethylsterol fraction, which was further separated by HPLC (TSKgel Super-ODS, TOSOH; 95% aq $\mathrm{CH}_{3} \mathrm{CN} ; 1.0 \mathrm{~mL} / \mathrm{min} ; 40^{\circ} \mathrm{C}$) to give 3.0 mg of 4 and 0.7 mg of 5 , along with 10.5 mg of β-amyrin derived from 2,3oxidosqualene accumulated in the mutant yeast cells. No other cyclization product was obtained in the reaction mixture, which was confirmed by $\mathrm{GC}-\mathrm{MS}$ analysis.
(13) ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 5.26(\mathrm{dt}, 1 \mathrm{H}, J=4.0,2.8 \mathrm{~Hz}, \mathrm{H}-7), 3.24$ (dd, $1 \mathrm{H}, J=11.0,4.2 \mathrm{~Hz}, \mathrm{H}-3$), 0.97 (s, $6 \mathrm{H}, \mathrm{Me}-28$, Me-30), 0.87 (d, $6 \mathrm{H}, J=6.8 \mathrm{~Hz}, \mathrm{Me}-26$, Me-27), 0.86 (s, 3H, Me-29), 0.83 (d, 3H, $J=$ 6.4 Hz, Me-21), 0.81 (s, 3H, Me-18), 0.75 (s, 3H, Me-19). ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 145.9(\mathrm{C}-8), 117.8$ (C-7), $79.3(\mathrm{C}-3), 53.3(\mathrm{C}-17)$, 51.3 (C-14), 50.6 (C-5), 48.9 (C-9), 43.5 (C-13), 39.4 (C-24), 39.0 (C-4), 37.2 (C-1), 36.0 (C-20), 35.3 (C-22), 35.0 (C-10), 34.0 (C-15), 33.8 (C-12), 28.5 (C-16), 28.0 (C-25), 27.7 (C-2), 27.6 (C-28), 27.3 (C-30), 24.5 (C-23), 24.0 (C-6), 22.8 (C-26)*, 22.6 (C-27)*, 22.1 (C-18), 18.6 (C-21), 18.2 (C-11), 14.7 (C-29), 13.1 (C-19) (*exchangeable). LRMS (EI; TMS-derivative): $m / z 500,485,395$. HRMS (EI): found for $\left[\mathrm{C}_{30} \mathrm{H}_{52} \mathrm{O}\right]^{+} 428.4047$; calcd. 428.4018 . $[\alpha]^{29} \mathrm{D}=-12^{\circ}\left(c=0.3\right.$ in $\left.\mathrm{CHCl}_{3}\right)$.
(14) Hydrogenation of eupha-7,24-dien-3 3 -ol isolated from Shea butter. As described, ${ }^{10}$ in the ${ }^{1} \mathrm{H}$ NMR, $20 R$-Me of euph-7-en- 3β-ol, and $20 S$-Me of its ($20 S$)-epimer, tirucall-7-en- 3β-ol, gave slightly different chemical shifts ($\delta 0.83$ and 0.86 , respectively).
(15) ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 5.21(\mathrm{t}, 1 \mathrm{H}, J=2.5 \mathrm{~Hz}, \mathrm{H}-12), 3.20(\mathrm{dd}$, $1 \mathrm{H}, J=11.0,5.0 \mathrm{~Hz}, \mathrm{H}-3), 1.05$ (s, 3 H , Me-27), $1.00(\mathrm{~s}, 3 \mathrm{H}, \mathrm{Me}-23$), 0.99 (s, 3H, Me-26), 0.96 (s, 3H, Me-25), 0.86 (d, 6H, $J=6.5 \mathrm{~Hz}$, $\mathrm{Me}-29, \mathrm{Me}-30$), 0.79 (s, 3H, Me-24), 0.72 (s, 3H, Me-28). ${ }^{13} \mathrm{C}$ NMR (125 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 139.6(\mathrm{C}-13), 120.5(\mathrm{C}-12), 79.0(\mathrm{C}-3), 55.4(\mathrm{C}-5), 47.9$ (C-9), 45.8 (C-19), 44.7 (C-18), 43.1 (C-14), 40.0 (C-21), 39.0 (C-8), 38.9 (C-1), 38.8 (C-4), 37.0 (C-10), 34.2 (C-17), 34.1 (C-7), 33.4 (C-16), 28.2 (C-23), 27.9 (C-22), 27.3 (C-2), 26.5 (C-15), 23.0 (C-11), 22.7 (C-29)*, 22.7 (C-30)*, 21.8 (C-27), 21.6 (C-28), 21.0 (C-20), 18.3 (C-6), 17.5 (C-26), 16.0 (C-25), 15.7 (C-24) (*exchangeable). LRMS (EI; TMSderivative): $\mathrm{m} / \mathrm{z} 500,485,395,280,279,220,190,135$. HRMS (EI): found for $\left[\mathrm{C}_{30} \mathrm{H}_{52} \mathrm{O}\right]^{+} 428.4007$; calcd. 428.4018. $[\alpha]^{29}{ }_{\mathrm{D}}=+9^{\circ}(c=0.07$ in CHCl_{3}).
(16) Akihisa, T.; Kimura, Y.; Tamura, T. Phytochemistry 1994, 37, 14131415.
(17) Tachibana, K.; Tori, M.; Moriyama, Y.; Tsuyuki, T.; Takahashi, T. Bull. Chem. Soc. Jpn. 1977, 50, 1522-1557.
JA031955V

[^0]: \dagger University of Shizuoka.
 § The University of Tokyo.

